Element orbitals for Kohn-Sham density functional theory
نویسندگان
چکیده
We present a method to discretize the Kohn-Sham Hamiltonian matrix in the pseudopotential framework by a small set of basis functions automatically contracted from a uniform basis set such as plane waves. Each basis function is localized around an element, which is a small part of the global domain containing multiple atoms. We demonstrate that the resulting basis set achieves meV accuracy for three-dimensional densely packed systems with a small number of basis functions per atom. The procedure is applicable to both insulating and metallic systems.
منابع مشابه
Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation
Kohn-Sham density functional theory is one of the most widely used electronic structure theories. Uniform discretization of the Kohn-Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn-Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per atom include the usage of atomic ...
متن کاملAdaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation
Kohn–Sham density functional theory is one of the most widely used electronic structure theories. In the pseudopotential framework, uniform discretization of the Kohn–Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn–Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per...
متن کاملNatural Orbital Functional for the Many-Electron Problem
The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. We present an approximate, simple, and parameter-free functional of the natural orbital...
متن کاملRelationship of Kohn–Sham eigenvalues to excitation energies
In Kohn–Sham density functional theory, only the highest occupied eigenvalue has a rigorous physical meaning, viz., it is the negative of the lowest ionization energy. Here, we demonstrate that for finite systems, the unoccupied true Ž . Kohn–Sham eigenvalues as opposed to the those obtained from the commonly used approximate density functionals are also meaningful in that good approximations t...
متن کاملBrueckner Orbitals and Density-Functional Theory
By means of Many-Body Perturbation Theory (MBPT) it is shown that minimizing the energy expectation value of a closed-shell system in a certain order of the preturbation expansion by varying the partitioning of the Hamiltonian, leads to a zeroth-order function, which – as the order of perturbation increases and provided the expansion converges properly – approaches a determinant of Brueckner or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012